Identification of Aneuploidy-Tolerating Mutations

نویسندگان

  • Eduardo M. Torres
  • Noah Dephoure
  • Amudha Panneerselvam
  • Cheryl M. Tucker
  • Charles A. Whittaker
  • Steven P. Gygi
  • Maitreya J. Dunham
  • Angelika Amon
چکیده

Aneuploidy causes a proliferative disadvantage in all normal cells analyzed to date, yet this condition is associated with a disease characterized by unabated proliferative potential, cancer. The mechanisms that allow cancer cells to tolerate the adverse effects of aneuploidy are not known. To probe this question, we identified aneuploid yeast strains with improved proliferative abilities. Their molecular characterization revealed strain-specific genetic alterations as well as mutations shared between different aneuploid strains. Among the latter, a loss-of-function mutation in the gene encoding the deubiquitinating enzyme Ubp6 improves growth rates in four different aneuploid yeast strains by attenuating the changes in intracellular protein composition caused by aneuploidy. Our results demonstrate the existence of aneuploidy-tolerating mutations that improve the fitness of multiple different aneuploidies and highlight the importance of ubiquitin-proteasomal degradation in suppressing the adverse effects of aneuploidy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aneuploidy: Tolerating Tolerance

Individuals, and cells, vary in their ability to tolerate aneuploidy, an unbalanced chromosome complement. Tolerance mechanisms can be karyotype-specific or general. General tolerance mechanisms may allow cells to benefit from the phenotypic plasticity conferred by access to multiple aneuploid states.

متن کامل

HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells.

Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we r...

متن کامل

High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells.

Most human cancers are aneuploid and have chromosomal instability, which contrasts to the inability of human cells to normally tolerate aneuploidy. Noting that aneuploidy in human breast cancer correlates with increased expression levels of the Mps1 checkpoint gene, we investigated whether these high levels of Mps1 contribute to the ability of breast cancer cells to tolerate this aneuploidy. Re...

متن کامل

Chromosomal Instability, Aneuploidy, and Gene Mutations in Human Sporadic Colorectal Adenomas

Whether in vivo specific gene mutations lead to chromosomal instability (CIN) and aneuploidy or viceversa is so far not proven. We hypothesized that aneuploidy among human sporadic colorectal adenomas and KRAS2 and APC mutations were not independent. Additionally, we investigated if 1p34-36 deletions by dual target FISH were associated with aneuploidy. Among 116 adenomas, 29 were DNA aneuploid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2010